
Operating System:
Chap2 OS Structure

National Tsing-Hua University
2016, Fall Semester

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 2

Outline
 OS Services
 OS-Application Interface
 OS Structure

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 3

OS Services

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 4

OS services
 User interface
 Program Execution
 I/O operations
 File-system manipulation
 Communication
 Error detection
 Resource allocation
 Accounting
 Protection and security

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 5

OS services
 User interface
 Program Execution
 I/O operations
 File-system manipulation
 Communication
 Error detection
 Resource allocation
 Accounting
 Protection and security

ensuring the efficient
operation of the system itself

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 6

OS services
 User interface
 Program Execution
 I/O operations
 File-system manipulation
 Communication
 Error detection
 Resource allocation
 Accounting
 Protection and security

ensuring the efficient
operation of the system itself

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 7

User Interface
 CLI (Command Line Interface)
 Fetches a command from user and executes it
 Shell: Command-line interpreter (CSHELL, BASH)

Adjusted according to user behavior and preference

 GUI (Graphic User Interface)
Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc
Various mouse buttons over objects in the

interface cause various actions
 Most systems have both CLI and GUI

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 8

Communication Models

Msg Passing Shared Memory

 Communication may take place using either
message passing or shared memory.

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 9

Applications-OS Interface
 System calls
 API

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 10

System Calls
 Request OS services

 Process control—abort, create, terminate process
allocate/free memory

 File management—create, delete, open, close file

Device management—read, write, reposition device

 Information maintenance—get time or date

 Communications—send receive message

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 11

System Calls & API
 System calls

 The OS interface to a running program
 An explicit request to the kernel made via a software interrupt
 Generally available as assembly-language instructions

 API: Application Program Interface
 Users mostly program against API instead of system call
 Commonly implemented by language libraries, e.g., C Library
 An API call could involve zero or multiple system call

Both malloc() and free() use system call brk()
Math API functions, such as abs(), don’t need to involve system call

System Calls
(Assembly language)

Application Program Interface C Library (libc)

OS

/usr/src/linux/arch/i386/kernel/entry.S

Chapter2 OS-Structure

Interface vs. Library
 User program:

printf(“%d”, exp2(int x, int y));

 Interface:
int exp2(int x, int y);
i.e. return the value of X · 2y

 Library:
Imp1: int exp2(int x, int y) { for (int i=0; i<y; i++) x=x*2; return x;}
Imp2: int exp2(int x, int y) { x = x << y; return x;}
Imp3: int exp2(int x, int y) { return HW_EXP(x,y);}

Operating System Concepts – NTHU LSA Lab 12

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 13

API: Application Program Interface
 Three most common APIs:

 Win32 API for Windows
http://en.wikipedia.org/wiki/Windows_API
http://msdn.microsoft.com/en-
us/library/windows/desktop/ff818516%28v=vs.85%29.aspx

 POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

POSIX  “Portable Operating System Interface for Unix”
http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/version4/GS5_APIs.pdf

 Java API for the Java virtual machine (JVM)

http://en.wikipedia.org/wiki/Windows_API
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516%28v=vs.85%29.aspx
http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/version4/GS5_APIs.pdf

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 14

An Example of System Calls
 System call sequence to copy the contents of

one file to another file

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 15

An Example of Standard API
 Consider the ReadFile() function in the Win32 API—a

function for reading from a file

A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 16

API – System Call – OS Relationship

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 17

Standard C Library Example
 C program invoking

printf() library call,
which calls write()
system call

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 18

Why use API?
 Simplicity
API is designed for applications

 Portability
API is an unified defined interface

 Efficiency
Not all functions require OS services

or involve kernel

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 19

System Calls: Passing Parameters
 Three general methods are used to pass

parameters between a running program and
the operating system.

 Pass parameters in registers

 Store the parameters in a table in memory, and
the table address is passed as a parameter in a
register

 Push (store) the parameters onto the stack by the
program, and pop off the stack by operating
system

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 20

Parameter Passing via Table

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 21

Review Slides (1)
 What are the two communication models

provided by OS?
 What is the relationship between system calls,

API and C library?
 Why use API rather than system calls?

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 22

System Structure:
 Simple OS Architecture
 Layer OS Architecture
 Microkernel OS
 Modular OS Structure
 Virtual Machine
 Java Virtual Machine

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 23

User goals and System goals
 User goals – operating system should be easy

to use and learn, as well as reliable, safe, and
fast

 System goals – operating system should be
easy to design, implement, and maintain, as
well as reliable, error-free, and efficient

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 24

Simple OS Architecture
 Only one or two levels of code
 Drawbacks: ________________________

MS-DOS UNIX

Un-safe, difficult to enhance

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 25

Layered OS Architecture
 Lower levels independent of upper levels

 Nth layer can only access services provided by 0~(N-1)th layer

 Pros: Easier debugging/maintenance
 Cons:_____________________________ Less efficient, difficult to define layers

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 26

Microkernel OS
 Moves as much from the kernel into “user” space
 Communication is provided by message passing
 Easier for extending and porting

Applications

I/O Manager Graphics
Subsystems

Network
 Drivers

Device
Drivers

Graphics
 Drivers

Microkernel

Hardware

Applications
Processes

Processes

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 27

Modular OS Architecture
 Most modern OS implement kernel modules

 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Similar to layers but with more flexible
 E.g., Solaris

 How to write kernel module
 http://www.linuxchix.org/content/courses/kernel_hacking/lesson8
 http://en.wikibooks.org/wiki/The_Linux_Kernel/Modules
 https://www.thc.org/papers/LKM_HACKING.html

http://www.linuxchix.org/content/courses/kernel_hacking/lesson8
https://www.thc.org/papers/LKM_HACKING.html

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 28

Virtual Machine

 A virtual machine takes the layered
approach to its logical conclusion
 It treats hardware and the operating system

kernel as though they were all hardware

 A virtual machine provides an interface
identical to the underlying bare hardware
Each process is provided with a (virtual) copy of

the underlying computer
 Difficult to achieve due to “critical instruction”

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 29

Virtual Machine

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 30

Usage of Virtual Machine
 provides complete protection of system

resources
 a means to solve system compatibility

problems
 a perfect vehicle for operating-systems

research and development
 A mean to increase resources utilization in

cloud computing

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 31

Vmware (Full Virtualization)
 Run in user mode as

an application on top
of OS

 Virtual machine
believe they are
running on bare
hardware but in fact
are running inside a
user-level application

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 32

Para-virtualization: Xen
 Presents guest with system

similar but not identical to
the guest’s preferred systems
(Guest must be modified)

 Hardware rather than OS and
its devices are virtualized
(Only one kernel installed)

 Within a container (zone)
processes thought they are
the only processes on the
system  Solaris 10: creates a virtual layer

between OS and the applications

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 33

Java Virtual Machine
 Compiled Java programs are platform-neutral

bytecodes executed by a Java Virtual Machine
(JVM)

 JVM consists of
 - class loader
 - class verifier
 - runtime interpreter

 Just-In-Time (JIT) compilers increase
performance

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 34

Review Slides (2)
 What is the difference between the layer

approach, the modular approach and
microkernel?

 What are the advantages of using virtual
machine?

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 35

Reading Material & HW
 Chap 2
 HW (Problem set)
 2.7, 2.10, 2.13

 Reference
 Understanding Full Virtualization, Paravirtualization, and

Hardware Assist
 www.vmware.com/files/pdf/VMware_paravirtualization.pdf
 APIs, POSIX and the C Library
 http://book.chinaunix.net/special/ebook/Linux_Kernel_Develo

pment/0672327201/ch05lev1sec1.html

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://book.chinaunix.net/special/ebook/Linux_Kernel_Development/0672327201/ch05lev1sec1.html
http://book.chinaunix.net/special/ebook/Linux_Kernel_Development/0672327201/ch05lev1sec1.html

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 36

Backup

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 37

OS/2

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 38

Mac OS X Structure hybrid structured

MM, RPCs, IPC,
thread scheduling
Message passing

CLI, POSIX APIs
file systems,
networking,

I/O kit for device drivers
Dynamically loadable modules

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 39

Simulation
 Simulation: the host system has one system

architecture and the guest system was complied for
a different architecture

 The programs (such as important programs that
were compiled for the old system) could be run in an
emulator that translates each of the outdated
system’s instructions into the current instruction set.
(disadv.: 10 times slow usually)

	Operating System:�Chap2 OS Structure
	Outline
	OS Services
	OS services
	OS services
	OS services
	User Interface
	Communication Models
	Applications-OS Interface�	System calls�	API
	System Calls
	System Calls & API
	Interface vs. Library
	API: Application Program Interface
	An Example of System Calls
	An Example of Standard API
	API – System Call – OS Relationship
	Standard C Library Example
	Why use API?
	System Calls: Passing Parameters
	Parameter Passing via Table
	Review Slides (1)
	System Structure:�	Simple OS Architecture�	Layer OS Architecture�	Microkernel OS�	Modular OS Structure�	Virtual Machine�	Java Virtual Machine�
	User goals and System goals
	Simple OS Architecture
	Layered OS Architecture
	Microkernel OS
	Modular OS Architecture
	Virtual Machine
	Virtual Machine
	Usage of Virtual Machine
	Vmware (Full Virtualization)
	Para-virtualization: Xen
	Java Virtual Machine
	Review Slides (2)
	Reading Material & HW
	Backup
	OS/2
	Mac OS X Structure hybrid structured
	Simulation

